
Java for Embedded Systems. London
May, 25th 2000

AJA
CS

AJACS : Applying Java to Automotive
Control Systems

Antonio Kung / Trialog
www.trialog.com

Thilo Gaul / IPD/U.Karlsruhe
i44www.info.uni-karlsruhe.de

Java for Embedded Systems. London
May, 25th 2000

AJA
CS

Content

�Context of Automotive Electronics
�AJACS objectives
�AJACS technical requirements and issues
�Native code approach
�Timetable

Java for Embedded Systems. London
May, 25th 2000

AJA
CS

Automotive Market

� Increasing number of electronics
– $240 in a vehicle by 2001
– $4.9 billion for DSP, microcontrollers, microprocessors

�Fragmented market (4 bit to 128 bits)
– 8-16-32 bits for control
– 32 bits+ for infotainment

Java for Embedded Systems. London
May, 25th 2000

AJA
CS

Automotive Industry

�More global functions
– Multiplexing (CAN)
– Interconnectivity with vehicles

�Different Car manufacturer/OEM relationship
– Car manufacturer define overall system and retain know-

how
• Car manufacturer provide application
• OEM provide incomplete Electronic Control Units (ECU)
• OEM provide software components

Java for Embedded Systems. London
May, 25th 2000

AJA
CS

Two Worlds

� Infotainment (Navigation, Internet, Telecom).
– e.g. AMIC initiative (www.ami-c.com) on Java-based

technology
�Control bus (powertrain, ABS, engine control ...)

– e.g. OSEK/VDX initiative (www.osek-vdx.org) on RTOS
and multiplexing
• TTP for fault-tolerance

– e.g. LIN Local Interconnect Network announcement
• Audi, BMW, DaimlerChrysler, Volvo, VW)

Java for Embedded Systems. London
May, 25th 2000

AJA
CS

Demands on Technology and Tools

�Open systems (e.g. OSEK/VDX, AMIC)
�Advanced methods and tools (e.g. OMT, UML)
�Support for dependability in some cases (e.g. TTP)
�Hardware independence

– e.g. A provides application, B and C provide ECU
hardware

�Need for single chip approach
– 8-16-32 bits
– Small memory footprints (128 Kbytes ROM 10Kbyte

RAM).

Java for Embedded Systems. London
May, 25th 2000

AJA
CS

AJACS

�2-year Initiative
�Consortium

– Trialog
– PSA (Peugeot-Citroën)
– Centro Riserche Fiat
– Mecel (technology centre of Delphi)
– University of Karslruhe

Java for Embedded Systems. London
May, 25th 2000

AJA
CS

AJACS Objectives

�Specification, Development, Demonstration of
– an open technology
– based on Java
– for deeply embedded automotive control systems

� Industrial viewpoint
– Benefit from object orientation in terms of structuring,

reusability, dependability
– WORA attributes to some extent, robustness attributes
– Support the same kind of real-time constraints which non

Java based ECUs are managing today
– Single chip approach - Small footprint

Java for Embedded Systems. London
May, 25th 2000

AJA
CS

Technical Requirements

�Mechanisms and APIs must
– support existing standards in the automotive industry

(OSEK/VDX)
– support legacy C code
– support calibration mechanisms
– support distribution mechanisms

�Run-time must have right level of performance.
Native code

� Issues related to Java
– e.g. Memory management, synchronisation, interrupt, ..
– static versus dynamic

Java for Embedded Systems. London
May, 25th 2000

AJA
CS

Static VS Dynamic

�Static systems
– static predetermined configuration (e.g. task 3)

�… are easier for determinism
�… allows for small footprints
�Example of Threads

– can only be created at initialization time?
– Association between Java entity and underlying static

entity
�Example of Memory management

– is GC needed?
– immortal memory? Scoped memory?

Java for Embedded Systems. London
May, 25th 2000

AJA
CS

OSEK/VDX

�Standard architecture for distributed control units
in vehicles

�Specifies abstract APIs
– real-time operating system OS
– communication COM
– network management NM
– system generation OIL

�Static system

Java for Embedded Systems. London
May, 25th 2000

AJA
CS

OSEK/OS supports for

�Tasks
– Basic tasks - no waiting
– Extended tasks

�Resource
– Priority ceiling protocol
– No waiting

�Events
�Alarms and counters

Java for Embedded Systems. London
May, 25th 2000

AJA
CS

OIL (OSEK Implementation Language)

�Entities are described in OIL (e.g. task)
�Run-time entity descriptors (e.g. task descriptor)

contains (typically)
– ROM part
– RAM part

�OIL builder generates configuration info
– e.g. constants in ROM
– e.g. initialization code ...

Java for Embedded Systems. London
May, 25th 2000

AJA
CS

Issues

�Combine OSEK/VDX execution model with Java
execution model

�Combine OIL with Java
– Entities described in OIL
– Builder generate structure

Java for Embedded Systems. London
May, 25th 2000

AJA
CS

Native Code Approach vs Interpretation

�Standard approach : Interpretation of Byte-Code
– high-level Byte-Code pre-compiled from Java sources
– virtual machine / interpreter runs the program
– whole (virtual) state space available to

inspection/debugging
– exchangeable code pieces (dynamic class loading)

�Partial Compilation: JIT Compiler
– Parts (methods/expressions) are compiled to native code
– Compiler included in Virtual Machine

�Full Compilation: Offline Compiler
– Full native binary

Java for Embedded Systems. London
May, 25th 2000

AJA
CS

Native Code Approach vs Interpretation
� Giving up interpretation we lose:

– Dynamic overloading of classes
– Compile once, run everywhere
– Runtime verifier

� We gain:
– Improved execution speed by orders
– Better static memory layout, less garbage collection

� We keep:
– Replacement of software modules
– Inspection/Debugging interface
– Write once, compile to many platforms

Java for Embedded Systems. London
May, 25th 2000

AJA
CS

Native Code VS Interpretation

Java
Sources

Java
Byte Code

Virtual
Machine

JavaC

JIT Compiler

Offline Online

Java for Embedded Systems. London
May, 25th 2000

AJA
CS

AJACS Native Code Approach

Java
Sources

Java
Byte Code

Native
Virtual

Machine

JavaC

C-Compiler

OfflineOnline

Native
Code-Gen

Lowering -
Transformator

Native
Code

C-
Backend

Optimizer

IPD Java Frontend

Java for Embedded Systems. London
May, 25th 2000

AJA
CS

AJACS Native Code Approach

�Lowering Transformator
– high level Java construct transformed into low level

intermediate form
– … called SSA (Single Static Assigment)

�Optimizer
– works on intermediate form

Java for Embedded Systems. London
May, 25th 2000

AJA
CS

Optimisation Technology

�Object orientation
– expensive polymorphic calls.
– many calls to procedures (e.g. 5 times more).
– frequent accesses to heap variables (e.g. 60% more memory

access)
– lots of heap objects allocation

�AJACS will use Explicit Dependency Graphs (EDG)
– optimization = rewriting of graph

�and BEG (Back End Generator) tool (U.Karlsruhe)
– Bottom-up-rewrite/bottom-up-pattern-match

Java for Embedded Systems. London
May, 25th 2000

AJA
CS

AJACS time table

�Draft spec November 2000
�Public spec February 2001
� Implementation August 2001

Java for Embedded Systems. London
May, 25th 2000

AJA
CS

Links with existing initiative

�Profile of J consortium
� Implementation on top of JSR-000001

