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Abstract
This paper presents AJACS (Applying Java to Automotive Control Systems), a two-year initiative to specify, develop
and demonstrate an open technology allowing the use of Java in deeply embedded automotive systems such as engine
control systems (http://www.ajacs.org). This initiative is jointly carried out within the High Integrity Profile working
group of the J consortium with the objective to define a J consortium specification.
It first discusses the trends in the automotive industry to go for global systems design : vehicle-level functions (e.g.
cruise control) are viewed as a collection of collaborating sub-functions (e.g. measure speed, read brake pedal…) with
very precise requirements. The basic aim is to reduce costs by being able to reuse the same sub-function for the
implementation of several vehicle-level functions, and thereby to avoid hardware or software redundancies.
A brief introduction on the OSEK/VDX initiative led by car manufacturers and OEMs to support this trend is then
presented, followed by a discussion on  how the Java technology could usefully complement it. Particular constraints
for industrial acceptance are listed. One of them is adaptability to deeply-embedded configurations that are used in the
industry today (e.g. system footprints with 256Kb ROM, 16Kb RAM). Technical issues are also presented.
The paper then sketches the overall approach for the definition of a Java-based programming environment suitable to
automotive control systems that is being defined in the High Integrity Profile for Automotive control (HIPA)
specification work. It finally elaborates on the generation approach that will be used in AJACS.

Automotive Control Systems Today
Today vehicles include an increasing number of electronics systems. It has been estimated by
Dataquest that the average semiconductor content of a vehicle will reach $240 by 2001, with
consumption of DSPs, microcontrollers and microprocessor reaching $4.9 billion. Electronic
control units or ECUs now play a crucial part in all the functional areas of a vehicle such as
infotainment / multimedia (e.g. radio system, road guidance, cellular phone), body control (e.g.
instrument panel, window lift, automatic door lock), or vehicle control (e.g. engine management,
transmission, brakes).
This was made possible through the advent of networking technology such as CAN. Typical
vehicles consist of several interconnected networks that more or less reflect distinct functional
areas. For instance, the Volvo S80 includes «18 ECUs connected via six networks: a low-speed
body electronics CAN bus (125kbit/s), a high-speed powertrain CAN bus (250kbit/s) and four other
networks».
ECUs are typically designed and developed by OEMs according to requirements set up by car
manufacturers. Until recently, each ECU was dedicated to a single user-function (e.g. climate
control) and OEMs had entire freedom for the implementation (hardware and software). Car
manufacturers now try to introduce more flexible development processes that support the
breakdown of the user function into fine-grain sub-functions with very precise requirements, in
particular at the software level. Two examples of such breakdown (“Display speed” and “Cruise
Control” user functions) are presented in Figure 1. At some point in the development process, the
resulting sub-functions will be mapped to the hardware subsystems, the ECUs, that form the
physical architecture (see Figure 2). The intent of the car manufacturer is that the functional

mailto:Jerome.charousset@trialog.com
mailto:Antonio.kung@trialog.com
mailto:Gaul@ipd.info.uni-karlsruhe.de
http://www.ajacs.org/


specification and the physical architecture design tasks can be carried on in parallel with definite
synchronization points (the tentative physical allocations of sub-functions).

Figure 1 - Example of User Functions

The car manufacturers expect many benefits of such a development process : having more control
on the specification of the user functions, protecting trade secrets by keeping some crucial sub-
functions under their only control, reducing development duration and reducing the resulting bill of
materials for the vehicle electronics.

Figure 2 - Example of Physical Allocation

Resulting from this trend, the relationship between car manufacturers and OEMs is thus starting to
change. OEMs may be subcontracted for the development of software components only (e.g. an
entire user function, or all the sub-functions sitting in the engine control ECU). Or OEMs may be
subcontracted for the provision of an “incomplete ECU”, that is an hardware and software platform
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on which sub-functions can be further added by the car manufacturer or some third-party  (e.g. the
engine control ECU without the sub-functions related to automatic gear shift).
From a different perspective, the OEMs also seek for a more flexible development process. Many of
them try to set up generic hardware and/or software platforms that would fulfill all the general
requirements for a particular functional domain (e.g. climate control) ; the intent is that a large
range of products can be easily and cheaply derived from these generic platforms by a quick
tailoring to the specific requirements of each individual project.  At the software level, such generic
platforms usually rely on a definite set of fine-grained components that can be interconnected in
various ways, depending on the actual requirements to be fulfilled.
To address the trend towards advance electronic architectures, the whole industry has identified the
need to provide guidance on the transition towards advanced electronic architectures. It has been
pushing from the start for the definition of open systems, with the definition of corresponding
interfaces (APIs) as in the OSEK/VDX (1) initiative presented below. It has also been pushing for
the use of advanced software engineering methods (such as OMT, UML), and approaches
promoting software reuse (such as object-oriented programming).

The OSEK/VDX Initiative
OSEK, an abbreviation for the German term “Offene Systeme und deren Schnittsellen für die
Elektronik in Kraftfahrzeug”1, is a joint project started in 1993 by the German automotive industry.
Initial project partners were BMW, Bosch, Daimler-Benz, Opel, Siemens, Volkswagen and the IIIT
of the University of Karlsruhe as co-ordinator. French car manufacturers Peugeot and Renault
joined OSEK in 1994 introducing their VDX-approach (“Vehicle Distributed Executive”) which
was a similar project within the French automotive industry. The first results of the harmonization
effort were presented by the OSEK/VDX group in 1995.
An ISO submission process started in early 2000 for the latest release of the specifications. As of
today, OSEK/VDX is probably the most successful undertaking concerning standardization in the
embedded software industry:  there are more than 10 different providers of OSEK/VDX
components and many more proprietary implementations from car manufacturers and OEMs.
The scope of the OSEK/VDX specifications includes :

• OSEK/OS, a specification of behavior and APIs for a real-time operating system that makes
provision for the execution and synchronization of application tasks and interrupt routines.

• OSEK/COM, a specification of APIs and network protocols that supports exchange of data
messages between software components, either through local communication (i.e. the
transmitter and the receiver are located on the same ECU) or through a network.

• OSEK/NM, a specification of APIs and protocols that serve as a basis for network wide
negotiated management functions.  Basically, it supports a distributed monitoring scheme
for the ECUs, thus allowing a particular sub-function to be informed about the current
availability of the other sub-functions it relies on.

• OSEK/OIL, a language to describe the configuration of a particular software component or
of a complete application.  This configuration includes for instance the definition of the
operating system tasks, as well as the description of the messages to be received and/or
transmitted.

OSEK/VDX provides a standard architecture for distributed control units in vehicles. It meets the
two stringent automotive requirements we have previously mentioned: real-time support and small
footprints. This is reflected in OSEK/VDX characteristics :
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• It is a static system. All entities are known and declared in advance. Furthermore, all data
structures within OSEK/VDX are defined and initialized statically using the OIL language.
For instance a task descriptor contains information such as a starting address or priority
which are static. Such information is stored in ROM and not in RAM. In order to bring some
flexibility, the notion of mode management is also defined. Applications may switch from
one mode to another. This switch involves the initialization of the whole system to another
set of predefined objects.

• Many OSEK/VDX-based applications are interrupt intensive applications. As a matter of
fact, some of them could be entirely interrupt-oriented. This is why OSEK has defined the
notion of basic tasks or entities which can be considered as logical interrupts.

• Many applications need to react to cyclic events, although not periodic. This is the case of
engine control. OSEK provides services for associating events with a flexible notion of
counters, which could be a timer counter or any type of counter (e.g. an event from a
sensor).

• Because of the wide range of applications to be supported, the technology offers a number
of options: basic tasks (logical interrupt routines) or extended tasks (standard tasks with
waiting states), preemption or not, multiple activation or not of the same task.

• A common mutual exclusion service with PCP (Priority Ceiling Protocol) is supported for
basic tasks and extended tasks.

• Extended tasks may wait for events. Events are thus associated with configurations of
extended tasks.

Java
Three factors have contributed to the immense success of Java in the industry : the programming
language itself, the virtual machine capability, and of course the huge collection of freely available
libraries.
First of all, the Java language syntax is familiar and easy to grasp, especially for programmers with
a C/C++ background. It provides clean support for object-orientation. Complex and/or error-prone
language constructs (e.g. multiple inheritance, pointer arithmetic) are banned. It includes built-in
support for powerful concepts like multitasking or automatic garbage collection, thus relieving
applications of error-prone programming aspects. Robustness is ensured through strong type
checking at compilation time, as well as built-in support for runtime error checking (e.g. arithmetic
overflow, division by zero, incorrect array index). Last but not least, attention has been paid to
prevent any unspecified or implementation dependent behavior.
The virtual machine capability means that compiled Java programs and modules can be directly
executed by any implementation of the Java Virtual Machine (JVM) specification. The traditional
cross-compilation step is no longer required. This feature, also called “write once, run anywhere”
(WORA), further opens the way to dynamic downloading and linking of software components.

The AJACS Initiative
Because of the success of Java in the industry, and the increasing interest of the real-time
community to use it, it was felt that Java technology could also be used in automotive applications
and complement the OSEK/VDX technology :

• Through its object-orientation, Java makes it easy to design software component with
strictly defined interfaces, even at the source code level. Methodologies like OMT and UML
can be adopted with little effort.



• The Java language is designed to be platform independent. Thus hardware independence and
portability requirements are largely fulfilled.

• Easiness and robustness attributes contribute to high programmer productivity and low
defect rates.  This will help the development team focus on high-level activities like
component-based design.

To this end, the AJACS initiative2 was started in February 2000 with the following objectives:
• Define an open technology which relies on existing standards of the automotive industry,

such as OSEK/VDX.
• Retain the benefits expected from object-oriented language programming in terms of

software structuring, reusability, dependability in particular retain the portability, and
robustness attributes associated with Java.

• Address technical issues created by drawbacks of the Java language in terms of real-time
and determinism support for embedded systems with high integrity constraints. In the case
of automotive control, this means supporting the same kind of real-time constraints which
non-Java based ECUs currently handle and targetting the type of memory footprints that are
acceptable in the automotive industry (e.g. 256 Kbytes ROM, 16 Kbytes RAM).

Overview of Technical Issues
AJACS has to focus on a number of technical issues. First of all, Java is a dynamic execution
platform while OSEK/VDX is a static execution platform. Automotive control systems, like many
embedded systems, are static or closed systems. Programming resources are predetermined and
allocated only one time. The list of tasks, the list of drivers, the usage of memory is fixed and will
not change during the life of the system. Identification of entities is typically predetermined (e.g.
task 3). There are at least two reasons for using static systems in the industry: it is easier to have
deterministic systems, and it helps to meet small footprint constraints.
To see why static orientation somewhat conflicts with the main features of the Java language,
consider for instance multithreading and memory management:
• Threads are Java objects which are created dynamically. A Java thread is identified through a

dynamically created reference. In an underlying static system, this reference must be associated
somehow to an existing static identifier (e.g. task 3). This has two consequences. First Java
applications must only create predetermined threads at initialization time. Second a mechanism
must be provided to ensure the association between the Java entity and the underlying static
entity.

• Memory management in Java is fully dynamic. Objects which are no longer referenced are
automatically reclaimed. Since, in an underlying static system, entities are predefined, this
generally means that the corresponding Java object will always be referenced. Thus garbage
collection of such objects is not necessary. However, the language itself contains classes which
have no links with the underlying system. Java exceptions and Java strings are examples of such
classes. Java programmers may also introduce "collectable" objects, which - unless controlled
by the programmer - must be released automatically. Such classes are often used in such a way
that significant dynamic memory allocation is needed, implying the need for dynamic de-
allocation mechanisms. In such case, one might wonder whether garbage collection should be
included. We do not believe this will be accepted by the automotive industry, even though it is
feasible to use real-time garbage collection algorithms. Other approaches have been proposed
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by the real-time community such as the allocation of objects in the stack, provided some scope
rules are followed, or the explicit de-allocation by the programmer.

Adapting Java to static systems, in particular when part of the application is legacy C code, means
that an approach must be defined for mapping the underlying static configuration to whatever
remains dynamic in Java. In the case of OSEK/VDX, it means in particular that the OIL
configuration language must be combined with Java. All OSEK entities are described in OIL, and
the OIL-based building tool should be also be able to generate the appropriate configuration
structures related to Java.

The second issue is the level of CPU performance. The standard way to execute programs in the
Java environment is to interpret the platform independent Java Byte Code (JBC) in a virtual
machine (see Figure 3). The JBC is compiled from the original Java sources with a standard Java
compiler (JavaC).

Figure 3 - Standard Java Compilation Process

The virtual machine itself uses a built-in interpreter to run the JBC code. This interpretation mode is
obviously the one with the least runtime efficiency, and even on workstations execution times are
magnitudes away from traditional ones. A first level of optimisations can take place at runtime by
just-in-time (JIT) compilations of atomic parts of the JBC program, i.e. expressions or methods, to
native machine code. Usually only local optimisation steps are performed, because the cost of the
JIT compilations must be measured as execution times of the program. In addition there are two
major problems in using JIT compilers for embedded systems: both the amount of memory needed
and the CPU time required for the run-time optimiser are difficult to determine.
As an alternative to the pure interpretation mode, we can get back to a traditional off-line
compilation process generating full native binary code for the target system. This allows one to
perform global optimisations of the code and specialised code selection for the target architecture
which results in a better code quality. The traditional compilation approach has pros and cons. First,
execution speed is improved by orders of magnitude. Further, it can help in having more static
memory layouts, thus reducing garbage collection overhead. On the other hand, we loose a number
of features such as dynamic overloading of classes, or the fact that Java programs have to be
specifically recompiled for each target. We no longer have the “compile once, run anywhere”
capability.
The traditional compilation approach still allows us to meet software engineering requirements such
as the replacement of software modules and the support of inspection and debugging interfaces.
Last but not least, we still have portability, i.e. the “write once, compile to many platforms”
capability.
Because of bill of material reasons, the virtual machine capability (e.g. dynamic downloading of
classes) is not likely to be the mainstream for vehicle control and body control.
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The HIPA Specification
The above issues are being addressed within the J consortium (2), in particular in the High Integrity
Profile (HIP) working group which tackles safety critical, high integrity and fault-tolerant systems
as well as distributed systems. This specification subsets Java in a suitable version where all entities
are statically defined and where no garbage collection is needed. The AJACS consortium will
specialize the resulting HIP specification to take into account automotive control aspects and in
particular the support of OSEK/VDX. We now describe the resulting specification or HIPA
specification (High Integrity Profile for Automotive Control).
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Figure 4 - Overview of a Typical HIPA Development Environment

A HIPA compliant implementation is conceptually divided into two data-processing environments
(see Figure 4), the translation environment, which comprises the set of development tools needed
for the conversion of an HIPA applications into some binary representation for the target machine,
and the execution environment, which comprises all software components (including libraries)
needed for the execution of the binary representation of the program on the target machine.
The following files are involved :

• HIPA Java source files contain the automotive application code
• HIPA configuration files include data about the system static resources. Static entities

supported are those of OSEK/VDX such as tasks, resources, events, delays. The HIPA
configuration files are the counterpart of the OIL files in C.

• HIPA environment files are generated by the translation environment to reflect the impact
on Java programming of configuration aspects (i.e. HIPA configuration files)



• HIPA class files are the result of Java compilation.
The HIPA class files and the HIPA configuration files are finally used to generate a binary image
suitable to the underlying execution environment. This binary image can be the result of mixing C
and Java code. This is because a HIPA execution environment supports all OSEK/VDX entities.
The following APIs are defined :

• A configuration API. This API provides the glue between Java code and the
configuration vision of the underlying OSEK/VDX kernel. This means that all
OSEK/VDX entities identifications are declared through this API. For instance, if the
OSEK/VDX entities include a task called “Foo”, the translation tool will generate a Java
identification called “Foo” which can be used by the Java programmer to bind a Java
task to its underlying OSEK/VDX task.

• A task management API corresponding to OSEK/VDX tasks semantics.
• An interrupt management API corresponding to OSEK/VDX interrupts semantics.
• An event management API corresponding to OSEK/VDX events semantics.
• A synchronisation API corresponding to OSEK/VDX resource semantics based on the

use of Java synchronised blocks or methods.
In terms of conformance, HIPA implementations follow the OSEK/VDX conformance approach :

• Complete run-time checking capability is defined, with the possibility for the
programmer to explicitely switch off certain checks.

• The four OSEK/VDX classes of conformity are retained : BCC1, BCC2, ECC1, ECC2.
The OSEK/VDX (1) specification explains in details these classes. They influence
aspects such as event management support, the number of tasks per priority or task
activation semantics.

AJACS Generation Approach

Native Code Approach
The main benefits of compiling Java to native code are improved code quality and better memory
layout. Both result in significantly improved execution efficiency without additional effort on the
target machine since the whole process works off-line. The native virtual machine no longer
executes the generated code, but is more likely to be a standard runtime environment extended with
Java functionality. This will be the approach used in AJACS. Figure 5 illustrates the native code
compilation process used.

Figure 5 - Java Native Compilation Process

The lowering transformator gets input from a specialised Java front-end, or Java Byte Code (JBC),
generated with a usual Java compiler. We also adapted the widely used IBM Jikes compiler (7) to
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directly produce input for the AJACS compiler framework. The transformator lowers the high-level
Java constructs, which are also still present in JBC, to a low-level SSA (Single Static Assignment)
intermediate form. On this representation, general and target dependent optimisations are
performed. The AJACS framework offers two possibilities to produce target code from this
representation: It produces either low level C or native machine code with an optimising code
generator. The latter usually improves code quality, though it is more costly because every target
architecture family has to have its own code generator. The C code generation is typically preferred,
if a C compiler of high quality is already available.

Optimisation Technology to be used in AJACS
The object-oriented programming paradigm offers a lot of valuable features for the designer and
developer, but makes it even harder for the compiler to get rid of inefficiencies when compiling to
the machine.
Java programs, like other object-oriented languages, usually have a number of runtime efficiency
relevant drawbacks: indirections in data accesses and calls are not well handled, memory layout is
overly fragmented, and many small basic blocks are used. It is known (2) that compared to usual
imperative programs, object oriented programs have 5 times more procedure/method calls, 60%
more memory accesses, and 20 times more indirect calls due to polymorphism.

(Iterations per second
for Iterator from

OOPACK benchmarks)
bigger value means better result

Figure 6 - Performance of OO Native Code Systems

An additional severe problem is that standard optimisation techniques cannot be applied  in the
presence of these program features. To eliminate the resulting inefficiencies, a number of
optimising transformations have to be provided. They can be summarised mainly in two categories:
the conversion of heap objects to local states, and aggressive code placement and in-lining. An
adaptive grained value flow analysis allows to eliminate typical indirections, polymophism, and
data accesses. It is possible to apply expensive optimisations by using an iterative analysis
technique with adaptive accuracy. The more object-oriented program features can optimised away,
the more standard optimisations can be applied to the resulting code.
The main optimisations are performed through explicit dependency graphs (EDG),  a  SSA form
where optimisations correspond to graph rewritings on this representation. We have already carried
out initial experiments. The results based on standard object-oriented benchmarks are very
promising (see Figure 6).

Back-End Generator Technology Used in AJACS
Writing optimising compiler back-Ends by hand is no longer needed because well established
generator technologies and tools are available for code generation.
AJACS will use a code-generator generator technology that uses bottom-up-rewrite/bottom-up-
pattern-match techniques to implement optimising code selectors from specifications. This
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technology simplifies the task of the code generator developer because it allows him to concentrate
on local aspects,  while still fulfilling global optimisation criteria. Further, he neither has to be
bothered with traversal mechanism nor with register allocation implementations. Another advantage
of the technology is that formal verification of code selection correctness is possible.
This technology is provided by the Back-End Generator (BEG) tool from Uni Karlsruhe (3). It has
already been applied in several projects and assures easy retargeting to different embedded
architectures (6). The technology is based on the use of one unique integrated processor/code-select
description, a covering mechanism that assures optimisation in both code size or execution time, the
provision of several optimised register allocators built-in, the support of consistency and type
checks on specification, and finally the generation of an instruction scheduler from specification.

Conclusion
The HIPA specification will be finalized in 2001. The AJACS consortium will carry out an
implementation and validate the whole approach through two applications. The objective is to have
a global CPU performance and memory footprint which is compatible with today’s C-based
application.

References
(1) OSEK-VDX:  www.osek-vdx.org
(2) Calder, B., Grundwald, D. and Zorn, B.: Quantifying behavioral differences between C and C++

programs. Technical report, University of Colorado, 1994.
(3) Emmelmann, H. and Schröer, F.-W. and Landwehr, R.: BEG - A Generator for Efficient Back-Ends.

Proceedings of the Sigplan '89 Conference on Programming Language Design and Implementation,
1989.

(4) JSR-000001: www.rtj.org
(5) J consortium : www.j-consortium.org
(6) Gaul, T. and Schumacher, G.: Advanced Generator Techniques for Embedded Compilers, Proceedings

of the EMMSEC'99 Conference, Stockholm, Sweden
(7) IBM Java Compiler Jikes :  www.jikes.org
                                                          
 Java is a Trademark of Sun Microsystems, Inc. In the United States and in other countries.

http://www.osek-vdx.org/
http://www.rtj.org/
http://www.j-consortium.org/

	Abstract
	Automotive Control Systems Today
	The OSEK/VDX Initiative
	Java
	The AJACS Initiative
	Overview of Technical Issues
	The HIPA Specification
	AJACS Generation Approach
	Native Code Approach
	Optimisation Technology to be used in AJACS
	Back-End Generator Technology Used in AJACS

	References

